Telegram Group & Telegram Channel
Команда дня: pipe

Сегодня делимся полезной фишкой из библиотеки pandas — метод .pipe() для создания чистых и читаемых цепочек обработки данных.

import pandas as pd

# Пример: очистка и преобразование данных в одну цепочку
def clean_data(df):
return df.dropna().reset_index(drop=True)

def add_age_group(df):
df['age_group'] = pd.cut(df['age'], bins=[0, 18, 35, 60, 100], labels=['Kid', 'Young', 'Adult', 'Senior'])
return df

# Используем pipe для последовательной обработки
df = (pd.read_csv('data.csv')
.pipe(clean_data)
.pipe(add_age_group))


Зачем это нужно:
🎌 .pipe() позволяет организовать преобразования данных в логическую цепочку, улучшая читаемость кода
🎌 Удобно для сложных ETL-процессов (Extract, Transform, Load)
🎌 Легко добавлять новые шаги обработки

Пример в деле:
def normalize_column(df, col):
df[col] = (df[col] - df[col].mean()) / df[col].std()
return df

df = (pd.DataFrame({'value': [10, 20, 30, 40]})
.pipe(normalize_column, col='value'))


Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6423
Create:
Last Update:

Команда дня: pipe

Сегодня делимся полезной фишкой из библиотеки pandas — метод .pipe() для создания чистых и читаемых цепочек обработки данных.

import pandas as pd

# Пример: очистка и преобразование данных в одну цепочку
def clean_data(df):
return df.dropna().reset_index(drop=True)

def add_age_group(df):
df['age_group'] = pd.cut(df['age'], bins=[0, 18, 35, 60, 100], labels=['Kid', 'Young', 'Adult', 'Senior'])
return df

# Используем pipe для последовательной обработки
df = (pd.read_csv('data.csv')
.pipe(clean_data)
.pipe(add_age_group))


Зачем это нужно:
🎌 .pipe() позволяет организовать преобразования данных в логическую цепочку, улучшая читаемость кода
🎌 Удобно для сложных ETL-процессов (Extract, Transform, Load)
🎌 Легко добавлять новые шаги обработки

Пример в деле:
def normalize_column(df, col):
df[col] = (df[col] - df[col].mean()) / df[col].std()
return df

df = (pd.DataFrame({'value': [10, 20, 30, 40]})
.pipe(normalize_column, col='value'))


Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6423

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from kr


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA